Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model

Show simple item record

dc.contributor.author Dagnachew Daniel Mollaa
dc.date.accessioned 2025-06-12T11:54:06Z
dc.date.available 2025-06-12T11:54:06Z
dc.date.issued 2019-06
dc.identifier.uri http://hdl.handle.net/123456789/2394
dc.description.abstract Study region: The volcano-tectonic lakes basin of Abaya-Chamo is part of the Main Ethiopian Rift system and exhibits large variations in geomorphology, physiography and climate between the rift floor and the plateau. Study focus: Despite the importance of streamflow for water resources management and planning in the basin, many of the rivers there are ungauged. To make quantitative estimates of streamflow for spatially resolved water availability in such a highly heterogeneous environment, therefore, requires numerical modeling. This study is the first to quantify the surface and shallow groundwater resources in Abaya-Chamo, and to validate the physically fully distributed hydrologic model WetSpass under highly data-limited conditions, in a complex two-lake environment. New hydrological insights: Simulated total river flow and estimated baseflow were verified at 15 gauging stations, with a good agreement. The WetSpass model is shown to be suitable for such a complex setting with a correlation coefficient of 0.95 and 0.97 for total flow and baseflow respectively at a statistically significant level (p-value<0.05). The simulated annual water budget reveals that 74.6% of the 22.1 billion lit/yr in total precipitation in the basin is lost through evapotranspiration, 15.7% through surface runoff, and only 9.7% recharges the groundwater system. The simulations also revealed the surface runoff and groundwater recharge are the most sensitive to soil textural class, while evapotranspiration depends more strongly on land use. en_US
dc.description.sponsorship AMU en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Surface water Groundwater Water balance WetSpass Abaya-Chamo Lake basin en_US
dc.title Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model en_US
dc.type Other en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search AMU IR


Advanced Search

Browse

My Account